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ABSTRACT

In answer to two questions raised by W. N. Everitt , we show

that , given p > 1 and any countebly infinite set of points on the

positive X-axis , there is a q(x) in LT)
(O , co) for which the set of

points constitutes the point-continuou s spectru m associated with the

equation y ”(x) + - q(x) } y(x) = 0 (0 < x  <~~ ) and some homogeneous

boundary condition at x = 0
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THE EXISTENCE OF EI GENV ALU E S EMBEDDED IN THE CONTINUOUS
SPECTRU M OF ORDINARY DIFFERENTIAL OPERATORS

M. S. P. Ea stham and J. B. McLeod

1. Introduction

The purpose of this paper is to answer two questions raised by

W. N. Ever ltt concerning the spectru m a- associated with the differential
a

equation

y ’(x ) + - q(x) }y(x) 0 ( 0 < x < Q o )  (1. 1)

and the boundary condition

y(0) cos a + y ’( O ) sin a = 0 , (1. 2)

where q(x) is real-valued and continuou s and a is a real constant. We

introduce the usual  division of a- into the point , continuou s, and point-

continuous spectrum:

a- = Pa Uc a -  U pc0-
a a a a

[1, section 43; 4J , and since PCa- is our concern In this paper , we

repeat the definition that PCcr consists of those elgenvalues In a-

which are not isolated point s of a-

If q e L~(0,~~) fo r some p > 1 , It is well-known that

Ca- U~~ca- = { 0 , oo)
a a

[10, p. 112 , Theorem 2 5] and that PCa- is empty if p 1 (see [8] for

references). Specific examples have been constructed which show that

Sponsored by the United States Army under Contract No. DAA GZ 9 -75-C-
0024.



PCa- is not necessari ly empty when p > 1 and these are described later
a

in this  sectio n. The quest ions raised by Everit t  [8, sectio n 1, remark 7]

are whether PCo- can contain a countably inf ini te  number of points and
a

whe ther PCa- is bounded above when p >  I . We answer these questions
a

in the following theorem .

THEOREM. 
~~~ ~ ‘n~ 

(n 1, 2 , . . . )  be any sequence of positive

real numbers .  Then, given p >  I , there exists a real number a and a

real -valued continuous function q E L~ (0 , oo) such that PCo- 
~~ 

( 1. 1)-

(1. 2) is precisely { x }  ( n 1, 2 , . . . )  -

Here { x }  is permitted to be either bounded or unbounded. De spite

the doubts expressed in [8, section 1] about the applicability of the in-

ver se spectral theory of Gelfand and Levitan [9], we shall nevertheless

use this theory in the simplified form of Levitan and Gasymov [11] to

establish our theorem. We state the re sults that we need from [11] in

section 2 below and we prove the theorem in section 3.

The first  general result on the nature of FCc- was obtained by

Wallach [14] as follows.

Let
u r n  sup x l q ( x ) I  <~~ ( 1. 3)

x .-ø.~~

and denote the value of the lim sup by k . Then FCc- is bounded above

2b y k  f or all a .

Complementing this result , there are specific examples of q(x~i

satIsfying (1. 3), constructed by different method s, for which FCc- consistsa

-2- 
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of a single point ~ I n (0 , k2 ) for some a . Any q(x) sa t isfying (1. 3)

Is of course in L~ (0 , ~ ) (p > 1) . The f i rs t  examples were given by

von Neumann and Wlgner [13] and Wallach [141, the idea here being to

co nstruct  a different ia l  equation (1. 1), with X = F~, by calculat ing

y ” ( x) /y(x) for a suitable square-integr able y(x) . The asymptot ic theory

of Atki nson [2;8] and the use of certain s tep -funct ions  for q(x) [6; ?] provide

further examples. The inverse spectral theory of [9] was first  used to pro-

duce a single point ~i in PCo- by Moses and Tuan [121 and again by

Cha udhuri and Everitt [4 ;8]. We re fe r to [5] and the references therein

for further related work on PCa- -a

It should be mentioned that none of the above example s produces

a value of ~ arbit rarily near to k 2 in any sense , th: best bei ng a

val ue near to 4~r 2 k 2 
[6] . This leads to the following open question.

(*) Let e > 0 be given. Is there a q(x) such that

u r n  sup x j q ( x ) I k <~~
x-~ ~

a nd, for some a, FCc- contains a point ~ satisfying ~i. > (1-~ )k 2 
?

( The related result  of Borg [3] should be noted , that if ( 1. 3) is replaced by

the condition that
I q ( t ) l d t < k l o g x

for all sufficiently large x, then FCc- is bounded above by k 2 , and the

result Is best possible. However , the proof that the result is best possible

dr~es not answer ( *) . )

-3- 
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There is a second open quest ion which arises out of the work In this

paper. It Is not clear whether or not the q(x) which we construct to prove

our theorem satisfies (1. 3). However , as we shall point out in section 3,

the e st imate (3.  15) suggests that our q(x) does not sat isfy (1. 3). We

therefore pose the following question.

(‘~~~) Is FCc- necessari ly a f in i te  set of p oints when ( 1. 3) hold s?
— a

Ack nowledgement.  The main work on this paper was done while we

were at the London Mathematical  Society Symposium on Partial Dif ferent ia l

Equations at Durham In July 1976. We are gra teful  to Professors D. E.

Edmund s and L. E . Fraenke l for the Invi tat ion to join this symposium.

2. Inverse spectral theory

We state here the theorem from [11] that we use.

INVERSE SPECTRAL THEOREM. Let p(X )  be an increasing function

of X in (-
~~~° ,~~~~~

) . Let the following cond itions (a) and (b) hold.

(a) If f E L2 (0 , ~‘) has co mpact support and If

f E
2 (X) dp(~) = 0

where

E(~ ) = f(x) cos(x~~X )dx

then f = 0  p. p.

(b) If

-4-



I P ( X )  ( X < 0 )
= -1 — 

(2. 1)
p ( k )  - Zir N X  (X ’ O)

the n the function

f Cus( X ~~~~X )  dc- ( X)

converges boun dec ily to ~ ( x) in any compact x -interva l as A -~~ 00~~

where ~ ( x) has  M * 1 locally integrable derivatives.

Then there is a nu mber a and a function q(x) with M locally in-

tegrrib le derivativ es such that p( X)  is the spectral function of (I. l ) _ ( l .  2)

with this a a nd q(x)

The formu lae in [lii from which a and q(x) may be determined are

as follows. Let

A
F(x , t) = u r n  f cos(x ’~. i X )  cos(t~. i X )  da- (X )  (2 . 2)

A-’~~ -
~~~

a nd let K(x , t) be the uni que solution of the Integral equation

F(x , t) + K(x , t) + K(x , s) F(s , t)ds = 0 (0 < t  < x )  . (2. 3)

Then q(x) 2 
~j~

- K(x , x) (2. 4)

and a Is determined by

cot a -K(0 , 0)

The rel ationship between p(X ) and a- , for the particular a and

q(x) given by the inverse spectral theorem , is , we recall , that a- con-

sists of those points in any neighbourhood of which p(X )  Is not constant.

- 5 —
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Also, FCc- consists of those points of discontinuity of p(X)  which are
a

not isolate~ points of a-a

In our construction , we choose p(X) to have the form

10 (X < 0)
p (X )  = (2 .  5)

+ 3’ a H ( X - X ) (X > 0) ,

x <xn

where

(0 ( X < 0 )

H(X )  = (2 . 6 )
t~ l ( X > 0 )

and the an are positive nu mbers yet to be chosen. Here the X are as

in the state ment of our theorem in section 1, and the FCc- corresponding
a

to th is  p ( X )  is cer ta i nly  prec isely { X }  . We aim to show that , given

p > 1, the a ca n be chosen sufficiently small to ensure that q(x) , as

given by (2. 4) ,  is L~ (O , Qc) . At thi s point we make the standing assumptions

that

a < 1 for all n (2.7)
n

and

~~~~~~~~ 3’. a~~~ X~~< °° . (2 . 8 ) , (2 . 9 )

Already (2. 8) is required for (2. 5) to make sense when { x )  is unbounded.

We have to check that conditions (a) and (b) in the inverse spectral

theorem are satisfied. Since a > 0 in (2. 5), it is clear that in (a) we

have E(X ) 0 In (0 , oa) , whence f = 0 p. p. Also , by ( 2.1) and (2. 5),

(b) is certainly satisfied with M = 0 since (2. 9) Is assumed .

-6-
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3. The construct ion of q(x )

By (2. 1), (2 . 2),  (2. 5) a nd (2.  8), we have

F(x , t) = 

n~ l 
a n cos( x 

~~~~ 
cos( t\ - \ )  . (3.  1)

To solve (2. 3), at least fo rmally ,  we try

K(x , t) = v A~ ( x) cos(t~~X~ ) . (3. 2)

(We note that it would also be possible to use the more explicit form

K(x , t) V 
~ A m n cos( x 

~~~~~ 
cos(t~~~~ )

r n = l n = l

but the re appears to be no advantage to be gained by doing this.) On

subst i tut ing (3. 1) and ( 3 . 2 )  into (2.  3) and setting the coefficient of

co s(t~i X  ) equal to zero , we obtai n

a cos( x\ / X  ) + A (x) + a ~ A (x) I. (x) = 0
n n n n j, n

that i s,

A~ (x) {a~~ + I~ ~(x) } = - 

‘ 1 
A~(x) I~ ~( x) - cos(x ~~X 0 ) (3.  3)

(n = l ,2,...)

where

Ij , ~(‘~ = f cos(s ~~X~ ) cos(s~~\~ )ds . ( 3 . 4 )

The equations (3. 3) form an infinite set of equations which are to determine

the A (x)n 
.-7-
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1
To j u s t i f y  working with an in f in i t e  set of equat io ns , we f i rs t  con-

sider the truncated set of equations obtained by setting A
n = 0 (n = N~-l

N~~ , . - .) in the first N equations and treating these N equations as

equations for A1, - . . , AN 
. This truncated set has a un ique solu tion ,

since it is standard that the integral equation (2. 3) has a unique solution

wh en we take

N
F(x , t) V a CoS(x  \JT ) cos( t NI X )

n n n
n=1

a nd we denote this  solution by A (N ) (n = 1, . . . , N) . (The A~
N) are of

course funct ions of x . )

By ( 3 . 4 ) ,  we have , for j * n

( I j n (X) I = 
~~~~

< INI~ - NITH
— n j

and so

Ir~ n~
’
~~ 

< • y ( 1  < j  < ~o , j � n) , (3.5)

where

= sup IN I x~ - I~~~~~
l

. (3. 5A)
j :#n

Now we can deduce fro m the equations for A (N) the inequalit ies

J A ~~~ I ~~ (a~
1 

+ ‘n, n
) 1 

~~~~~~~ 
+ 1) (n = l~ . . .~ N) (3. 6)

- 8 -
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where
N

j~ A~~’ThI = ~~ 1A ~~~I -
j = 1

S u m m i n g  ( 3 .  6) ov& ~r N we hav’i

N N
I !A ~~~~~~~~~ II 

~ ( n i  
a~~~)IlA~~ l I 

n = l  
a

and if we a s sume , as we may, that  the a
n 

are chosen so that

~~~ 

a~~~~~ <~~ , ( 3 . 7 )

we have

J l A ~~~~~~~~~ )1 < 2
n~ i 

a
n 

= C , (3. 8)

say, where C is f in i te  by (2. 8) and , of course , C is independent of

N and x . Subst i tut ing back into (3.  6), we obtain

A
(N) I < (a 1 

+ ~ )
l 

(C ~ + 1) . (3. 9)
n — n n , n n

If we now let N -~ ~~ for fixed n and x , the Bo lzano-Welers t rass

theorem assure s us that , at least through some subsequence of N

A~~~ (x) -. A
n

(X) (3. 10)

say, and that  A n 
also sa t i s f i e s  the i n e q u a l i t y  (3.  ~

).  By the usual

diagonal  process , we can choose the subsequence of N so that , as

N —
~ ~~, (3.  10) holds for all  n , and we can now show that  the A sa t i s fy

the equations (3. 3). First , the in f in i t e  series in (3. 3) converges by virtue

-9-
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(3 .  ~) ( \v i th  ~ in p l .ice of A~~~ ) , (3 .  5) , (2.  8) and ( 3 . 7 ) .  Thus (3 .  3)

m~ik es  sense.  ~~ - :-:t , giv ’ n £ > 0 , we can , by (3 .  9) ,  (Z .  8) and (3. 7),

f i nd  R su f f1 - i ~~ut ly 1 r j ~ th .~t , for all N > 8,

AH <~~~~€, IA J I <~~~c

Thus , t~~k i nq specif ic  :dly the n -th  equat ion in (3. 3) and us ing (3.  5), we

see t h u t  the d i f f e r ence  between the r igh t -hand  sides of the equat ion and

i ts  t r unc at ed  form does not exceed

~~ j~ i ~~~ - A . I  + Yn C < 2
~~n C

if N is s u f f i c i e n t l y  large.  Hence the n- th  equat ion in (3. 3) hold s as

t hr ~ l imi t  u f i ts t runca te d  form as N . Thus we have proved that  the

A n~ 
as d e f i n e d  by (3 .  10), sa t i sfy  the equations (3. 3).

With K(x , t) now def ined by (3.  2) ,  the convergence of the series

is assumed by (3. 9) (with An in place of A~~
’
~ ), as are the formal manip-

ula t ions  leading to (3.  3). Thus K(x , t) is indeed the (unique) solution of

(2 . 3).

It remains  to show that

K(x , x) E L~ (0 , oa)

at least if the a are chosen suitably. By (3. 2) , we have formally

K(x , x) = 3’ (A ’ (x) cos(x 
~~~~~~ ) - A (X) ~~~~ sin(x ~~~X ) )  . (3. 11)

It is there fore necessary to obtain bound s on A’ (x)

-10-
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If we d i f f e r e n t i a t e  the trunc t t n d  form of ( 3 .  ~~, s~ ti uf i c d by the

A (N )
, we obtain easi ly,  b L u i n g  in m m (3 .  4 )  and (~~

. ~ ) ,  t h ot

-I ri ( N)  d (~~)
I ~~3 I (x) ) A (x )  ~ I ( x )  — A . (x)  I

n n , n dx ~ 
~~~~~ 

j , n dx j

j tn

<~~~~~~~
‘
~ ~~C . (~~~~. I 2 )

Since (2. 9) is assumed , the same type of a rg u m en t  th at  w~~s us e d  for
(~ (

~~
-

_

~now es tabl i shes  that , for f ixed n and x , — A conv er ~~es t h r o u ~;h a
dx n

subsequence of N which can be t aken  to  be t h e  s~~me -
~~~~ bef or ’o If w

assume fur ther  that  the a are such th a t
n

~ 
a X < ~ and 

~ 
a V n N I \~~ . (3.  1 ~)

2
then the same type of argument can also be applied to —

~~
---

~~
- A~ with

dx
a bound (which we do not need to specify)  co r r e spon d ing  to ( - ~ . 9) and

which is independent  of N and x . In pass ing ,  we note that , by part

(b) of the inverse spectral theorem in section 2, the convergence of the firs~

series in (3. 13) implies that our q(x) is absolutely continuous in [0,

It can be readily verified that the bound corresponding to (3. ~)

which we obta in for —h- A~~~x fro m ( 3. 12) is
dx n

~~~ A~~~(x) ~ {a~~ + I~ n~~~ 
)

1 
~(C

1 
+ C~ )~ 0 N I \~~ C), (3. 1-fl

where ~-C 1 
is the sum of the series (2. f~). Thus, for any fixed n, th ’~

sequence ~~~~~~~~ A
U’
~ (x)) is , as N —. ~~~~, uni formly  bounded and

—11— 



equicontinuou s for x in f0 ,~~~~), a nd so the sequence (or at least a

subsequence)  converges uni fo rmly  as N-. for x in any compact

in te rva l .  It follows th at

d (N) d
— A (x) -.. ----- A (x)dx n dx n

and tha t  the e s t ima te  ( 3 .  14) holds for A’ (x)

Now that (3. 11) holds , we have , by (3. 9) and (3. 14) (for A~ (x) )

~~ K(x , x)~ ~ C 
~~ 

{a~~ ~ I~~~ ( x )i ’ 
~~n + +

(3. 15)

where C is a cons tan t. Also,

+ I (x) = a 1 
~ cos 2(s NIr )dsn n ,n n 

0

-l 1 1 - 1/z —a + — X ~
- — sin( Zx NI Xn 2 4 n n

-l 1 -1/2 1> a  - — )
~.— n  4 n 2

~ (a~~ + x) , (3. 16)

provided that a < Z N I X  , this being a further restr ict ion on the an —  n n
only if Urn ~~ >~n = 0 . In (3.  16), we use Young ’ s ineq uali ty

r Sab < a / r + b  /s

where a > 0, b > 0, r > 1, s > 1, and r ’ + s~~ = 1 . This give s

-12-
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I~ n
(X) 

~~ 
~~ r~~

r ~ l~
1s Jr >~l/s (3. 17)

Then , by ( 2 . 4 )  and (3 . l~ ), q( x) is in L~(0 ,~~) if

~~ 
a~~~(y ÷ + + l )}~~dx <~~~~~ , ( 3 . 18)

and this can be arranged by choosing, as we may ,  s so t ha t  1 < s < p

and ( a )  suf f ic ien t ly  small  that the iniinite series in (3 .18)  converges.

This completes the proof of our theorem.

In section 1 we raised the quest ion of whether  or not our q(x)

sa t i s f ies  (1. 3). That it may not do so is suggested by (3.  15) and (3. 16).

When x = a~~ for a par t icular  N, the term with n = N in the series in

(3. 15) is , by (3. 16), roughly of the size

X
’ (Y

N 
+ + 

~N ~~~~~~~~~~ ~ 1) (3. 19)

for large N . The factor mult iplying x~~ in (3. 19) is cer tainly unbounded

if {X ) is unbounded , and It is also unbounded if {x } is bounded be-
n n

cause then {~~~~~~) 
is unbounded by (3. 5A).

On the other hand , granted the convergence of the series in (3. 18),

it is clear fro m (3.  IS )  and (3. 17) that  q(x ) = O(x l/s ) as x . Thus ,

given c < 1, we can arrange that  q(x) = O(X
c) as x -, 

~~~
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